Neuromorphic Computing-Enabled Digital Twin Framework for Sustainable IT Supply Chain Integration in Smart Urban Ecosystems

Authors

  • Viraj P. Tathavadekar Research Scholar, Symbiosis International University, Pune, India Author
  • Nitin R. Mahankale Associate Professor, Symbiosis Centre for Management Studies, Symbiosis International University, Pune, India Author

DOI:

https://doi.org/10.64229/q5g7dh32

Keywords:

Neuromorphic Computing, Digital Twin Framework, Sustainable Supply Chain, Smart Urban Ecosystems, Green Technology Adoption, Circular Economy

Abstract

The convergence of neuromorphic computing, digital twin technologies, and sustainable supply chain management presents unprecedented opportunities for transforming urban cyber-physical systems. This viewpoint paper introduces a novel conceptual framework that integrates neuromorphic computing architectures with digital twin methodologies to optimize sustainable IT supply chain operations within smart urban ecosystems. The proposed framework addresses critical issues related to real-time data processing, energy-efficient computation, and adaptive decision-making for green technology adoption across complex urban supply networks. Through theoretical analysis and conceptual modeling, we demonstrate how brain-inspired computing paradigms can enhance digital twin capabilities for monitoring, predicting, and optimizing supply chain sustainability metrics. The framework incorporates spatiotemporal knowledge graph embeddings, hybrid intelligence systems, and circular economy principles to create responsive, self-adapting supply chain networks. Our approach offers significant implications for urban planners, supply chain managers, and technology implementers seeking to advance computational sustainability science. The integration of neuromorphic processing units with digital twin architectures enables unprecedented energy efficiency improvements of up to 1000x compared to traditional computing approaches while maintaining real-time responsiveness for critical supply chain decisions. This research plays role in emerging urban sector computational sustainability by contributing a foundational framework for next-generation smart city supply chain management systems.

References

[1]Aghajani, D., Gilani, H., Sahebi, H., & Vilko, J. (2025). A robust design of hydrogen supply chain with integrated sustainable pricing policy under government intervention: Circular economy-driven management. Energy, 334, Article 137660. https://doi.org/10.1016/j.energy.2025.137660

[2]Anttiroiko, A. V. (2023). Smart circular cities: Governing the relationality, spatiality, and digitality in the promotion of circular economy in an urban region. Sustainability, 15(17), Article 12680. https://doi.org/10.3390/su151712680

[3]Batista, L., Seuring, S., Genovese, A., Sarkis, J., & Sohal, A. (2023). Theorising circular economy and sustainable operations and supply chain management: a sustainability-dominant logic. International Journal of Operations & Production Management, 43(4), 581-594. https://doi.org/10.1108/IJOPM-12-2022-0765

[4]Buuveibaatar, M., Shin, S., & Lee, W. (2025). Digital twin framework for road infrastructure management. Applied Sciences, 15(10), Article 5765. https://doi.org/10.3390/app15105765

[5]Chen, W., Song, L., Wang, S., Zhang, Z., Wang, G., Hu, G., & Gao, S. (2023). Essential characteristics of memristors for neuromorphic computing. Advanced Electronic Materials, 9(2), Article 2200833. https://doi.org/10.1002/aelm.2200833

[6]Enuganti, P. K., Sen Bhattacharya, B., Serrano Gotarredona, T., & Rhodes, O. (2025). Neuromorphic computing and applications: A topical review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 15(2), Article 70014. https://doi.org/10.1002/widm.70014

[7]Faliagka, E., Christopoulou, E., Ringas, D., Politi, T., Kostis, N., Leonardos, D., Tranoris, C., Antonopoulos, C. P., Denazis, S., & Voros, N. (2024). Trends in digital twin framework architectures for smart cities: A case study in smart mobility. Sensors, 24(5), Article 1665. https://doi.org/10.3390/s24051665

[8]Feng, C., Wu, W., Liu, H., Wang, J., Wan, H., Ma, G., & Wang, H. (2023). Emerging opportunities for 2D materials in neuromorphic computing. Nanomaterials, 13(19), Article 2720. https://doi.org/10.3390/nano13192720

[9]Hezam, I. M., Ali, A. M., Sallam, K., Hameed, I. A., & Abdel-Basset, M. (2024). Digital twin and fuzzy framework for supply chain sustainability risk assessment and management in supplier selection. Scientific Reports, 14(1), Article 67226. https://doi.org/10.1038/s41598-024-67226-z

[10]Huang, W., Zhang, H., Lin, Z., Hang, P., & Li, X. (2024). Transistor-based synaptic devices for neuromorphic computing. Crystals, 14(1), Article 69. https://doi.org/10.3390/cryst14010069

[11]Jum'a, L., Ikram, M., & Jose Chiappetta Jabbour, C. (2024). Towards circular economy: A IoT enabled framework for circular supply chain integration. Computers & Industrial Engineering, 192, Article 110194. https://doi.org/10.1016/j.cie.2024.110194

[12]Kamble, S. S., Gunasekaran, A., Parekh, H., Mani, V., Belhadi, A., & Sharma, R. (2021). Digital twin for sustainable manufacturing supply chains: Current trends, future perspectives, and an implementation framework. Technological Forecasting & Social Change, 176, Article 121448. https://doi.org/10.1016/j.techfore.2021.121448

[13]Karuppiah, K., Virmani, N., & Sindhwani, R. (2024). Toward a sustainable future: integrating circular economy in the digitally advanced supply chain. Journal of Business & Industrial Marketing, 39(12), 2605-2619. https://doi.org/10.1108/JBIM-12-2023-0742

[14]Kayan, R. R., Jauhar, S. K., Kamble, S. S., & Belhadi, A. (2025). Optimizing bio-hydrogen production from agri-waste: A digital twin approach for sustainable supply chain management and carbon neutrality. Computers & Industrial Engineering, 204, Article 111021. https://doi.org/10.1016/j.cie.2025.111021

[15]Latsou, C., Ariansyah, D., Salome, L., Ahmet Erkoyuncu, J., Sibson, J., & Dunville, J. (2024). A unified framework for digital twin development in manufacturing. Advanced Engineering Informatics, 62, Article 102567. https://doi.org/10.1016/j.aei.2024.102567

[16]Li, L., Zhu, W., Chen, L., & Liu, Y. (2024). Generative AI usage and sustainable supply chain performance: A practice-based view. Transportation Research Part E, 192, Article 103761. https://doi.org/10.1016/j.tre.2024.103761

[17]Li, Y., Li, Z., Ren, J., Du, W., & Shen, W. (2025). A high-accuracy deep learning framework for digital twin model development of actual chemical processes. Engineering Applications of Artificial Intelligence, 159, Article 111780. https://doi.org/10.1016/j.engappai.2025.111780

[18]Li, Z., Tang, W., Zhang, B., Yang, R., & Miao, X. (2023). Emerging memristive neurons for neuromorphic computing and sensing. Science and Technology of Advanced Materials, 24(1), Article 2188878. https://doi.org/10.1080/14686996.2023.2188878

[19]Liu, L., Song, W., & Liu, Y. (2023). Leveraging digital capabilities toward a circular economy: Reinforcing sustainable supply chain management with Industry 4.0 technologies. Computers & Industrial Engineering, 178, Article 109113. https://doi.org/10.1016/j.cie.2023.109113

[20]Liu, R., Liu, T., Liu, W., Luo, B., Li, Y., Fan, X., Zhang, X., Cui, W., & Teng, Y. (2024). SemiSynBio: A new era for neuromorphic computing. Synthetic and Systems Biotechnology, 9(3), 594-599. https://doi.org/10.1016/j.synbio.2024.04.013

[21]Loaiza, J. H., Cloutier, R. J., & Lippert, K. (2023). Proposing a small-scale digital twin implementation framework for manufacturing from a systems perspective. Systems, 11(1), Article 41. https://doi.org/10.3390/systems11010041

[22]Lu, H., Zhao, G., & Liu, S. (2024). Integrating circular economy and Industry 4.0 for sustainable supply chain management: a dynamic capability view. Production Planning & Control, 35(2), 170-186. https://doi.org/10.1080/09537287.2022.2063198

[23]Lu, S., & Xiao, X. (2024). Neuromorphic computing for smart agriculture. Agriculture, 14(11), Article 1977. https://doi.org/10.3390/agriculture14111977

[24]MASEKE, B. F. (2025). Circular economy and digital transformation: Bridging sustainability and innovation in global supply chains. Revista de Management Comparat International, 26(3), 553-562. https://doi.org/10.24818/RMCI.2025.3.553

[25]Matarneh, S., Piprani, A. Z., Ellahi, R. M., Nguyen, D. N., Mai Le, T., & Nazir, S. (2024). Industry 4.0 technologies and circular economy synergies: Enhancing corporate sustainability through sustainable supply chain integration and flexibility. Environmental Technology & Innovation, 35, Article 103723. https://doi.org/10.1016/j.eti.2024.103723

[26]Osama, Z. (2024). The digital twin framework: A roadmap to the development of user-centred digital twin in the built environment. Journal of Building Engineering, 98, Article 111081. https://doi.org/10.1016/j.jobe.2024.111081

[27]Pang, T. Y., Juan D. Pelaez Restrepo, Cheng, C. T., Yasin, A., Lim, H., & Miletic, M. (2021). Developing a digital twin and digital thread framework for an 'Industry 4.0' shipyard. Applied Sciences, 11(3), Article 1097. https://doi.org/10.3390/app11031097

[28]Patil, A., Dwivedi, A., Abdul Moktadir, M., & Lakshay. (2023). Big data-Industry 4.0 readiness factors for sustainable supply chain management: Towards circularity. Computers & Industrial Engineering, 178, Article 109109. https://doi.org/10.1016/j.cie.2023.109109

[29]Prajapati, D., Jauhar, S. K., Gunasekaran, A., Kamble, S. S., & Pratap, S. (2022). Blockchain and IoT embedded sustainable virtual closed-loop supply chain in E-commerce towards the circular economy. Computers & Industrial Engineering, 172, Article 108530. https://doi.org/10.1016/j.cie.2022.108530

[30]Romagnoli, S., Tarabu', C., Maleki Vishkaei, B., & De Giovanni, P. (2023). The impact of digital technologies and sustainable practices on circular supply chain management. Logistics, 7(1), Article 1. https://doi.org/10.3390/logistics7010001

[31]Schützenhofer, S., Pibal, S., Wieser, A., Bosco, M., Fellner, M., Petrinas, V., & Kovacic, I. (2024). Digital ecosystem to enable circular buildings – The circular twin framework proposal. Journal of Sustainable Development of Energy, Water and Environment Systems, 12(2), 1-20. https://doi.org/10.13044/j.sdewes.d12.0500

[32]Shafique, M. N., Rashid, A., Yeo, S. F., & Adeel, U. (2023). Transforming supply chains: Powering circular economy with analytics, integration and flexibility using dual theory and deep learning with PLS-SEM-ANN analysis. Sustainability, 15(15), Article 11979. https://doi.org/10.3390/su151511979

[33]Shahzad, M. F., Liu, H., & Zahid, H. (2024). Industry 4.0 technologies and sustainable performance: do green supply chain collaboration, circular economy practices, technological readiness and environmental dynamism matter? Journal of Manufacturing Technology Management, 36(1), 1-22. https://doi.org/10.1108/JMTM-05-2024-0236

[34]Sindhwani, R., Hasteer, N., Behl, A., Chatterjee, C., & Hamzi, L. (2023). Analysis of sustainable supply chain and industry 4.0 enablers: a step towards decarbonization of supply chains. Annals of Operations Research. https://doi.org/10.1007/s10479-023-05598-7

[35]Su, S., Zhong, R. Y., Jiang, Y., Song, J., Fu, Y., & Cao, H. (2023). Digital twin and its potential applications in construction industry: State-of-art review and a conceptual framework. Advanced Engineering Informatics, 57, Article 102030. https://doi.org/10.1016/j.aei.2023.102030

[36]Supianto, A. A., Nasar, W., Aspen, D. M., Hasan, A., Karlsen, A. S. T., & Da Silva Torres, R. (2024). An urban digital twin framework for reference and planning. IEEE Access, 12, 152444-152465. https://doi.org/10.1109/ACCESS.2024.3478379

[37]Tang, Z., Zhuang, D., & Zhang, J. (2025). Evaluation framework for domain-specific digital twin platforms. Scientific Reports, 15(1), 1-15. https://doi.org/10.1038/s41598-024-82154-8

[38]Vandana, & Cerchione, R. (2025). Managing energy resources, carbon emissions and green technology adoption in circular economy transition: A mathematical approach. Journal of Cleaner Production, 501, Article 145105. https://doi.org/10.1016/j.jclepro.2025.145105

[39]Værbak, M., Billanes, J. D., Jørgensen, B. N., & Ma, Z. (2024). A digital twin framework for simulating distributed energy resources in distribution grids. Energies, 17(11), Article 2503. https://doi.org/10.3390/en17112503

[40]Wang, J., Zhang, L., Lin, K. Y., Feng, L., & Zhang, K. (2022). A digital twin modeling approach for smart manufacturing combined with the UNISON framework. Computers & Industrial Engineering, 169, Article 108262. https://doi.org/10.1016/j.cie.2022.108262

[41]Wang, S., Zhang, J., Wang, P., Law, J., Calinescu, R., & Mihaylova, L. (2023). A deep learning-enhanced Digital Twin framework for improving safety and reliability in human–robot collaborative manufacturing. Robotics and Computer-Integrated Manufacturing, 85, Article 102608. https://doi.org/10.1016/j.rcim.2023.102608

[42]Wynn, M., & Jones, P. (2022). Digital technology deployment and the circular economy. Sustainability, 14(15), Article 9077. https://doi.org/10.3390/su14159077

[43]Yang, C., Tu, X., Autiosalo, J., Ala-Laurinaho, R., Mattila, J., Salminen, P., & Tammi, K. (2022). Extended reality application framework for a digital-twin-based smart crane. Applied Sciences, 12(12), Article 6030. https://doi.org/10.3390/app12126030

[44]Yu, J. U., Cho, K. S., Park, S. W., & Son, S. Y. (2024). Digital twin system framework and implementation for grid-integrated electric vehicles. Energies, 17(24), Article 6249. https://doi.org/10.3390/en17246249

[45]Zhang, T., & Sun, S. (2021). An exploratory multi-scale framework to reservoir digital twin. Advances in Geo-Energy Research, 5(3), 239-251. https://doi.org/10.46690/ager.2021.03.02

[46]Zhou, Y., Zhou, G., & Zhang, C. (2023). An optimal operation control framework for digital twin manufacturing cell. Procedia CIRP, 118, 336-341. https://doi.org/10.1016/j.procir.2023.06.058

[47]Zhu, Y., Mao, H., Zhu, Y., Wang, X., Fu, C., Ke, S., Wan, C., & Wan, Q. (2023). CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review. International Journal of Extreme Manufacturing, 5(4), Article 42010. https://doi.org/10.1088/2631-7990/acef79

Downloads

Published

2025-08-07

Issue

Section

Articles