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Abstract

This paper presents a novel IoT-based framework for real-time urban air quality monitoring aimed at addressing the
limitations of traditional reference-grade station networks. The proposed system deploys dense networks of low-cost
multi-pollutant sensor nodes equipped with microcontrollers and wireless communication modules (Wi-Fi, LoRaWAN).
Embedded edge computing enables local data preprocessing and calibration using machine learning methods to enhance
sensor accuracy and reduce transmission overhead. Cloud analytics leverage time-series databases and advanced neural
network models to provide real-time pollution mapping, forecasting, and anomaly detection. A user-friendly web
dashboard and mobile applications offer personalized exposure tracking, health advisories, and public engagement
functionalities. Extensive laboratory and field evaluations demonstrate strong correlations between sensor outputs and
regulatory measurements for particulate matter (PM2.5, PM10) and gases (NO, CO), with data availability above 96%
and latency near 2.3 seconds. Cost analysis reveals the system delivers 125 times greater spatial coverage at a fraction
of the cost compared to traditional stations. The architecture’s scalability, security features, and calibrated sensor
reliability establish it as a practical solution for smart city environmental monitoring. The integration of edge
intelligence and cloud-based machine learning advances actionable urban air pollution management, promoting
healthier communities through accessible, continuous, and high-resolution air quality data.
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1. Introduction

Air pollution has emerged as one of the most pressing environmental challenges of the 21st century, exerting profound
impacts on public health, ecosystems, and urban sustainability worldwide. The World Health Organization [1] estimates
that millions of premature deaths annually are attributable to ambient air pollution, particularly fine particulate matter
(PM2.5), nitrogen oxides (NOx), ozone (0O3), and carbon monoxide (CO). Urban areas, characterized by dense
populations and concentrated emissions from traffic, industry, and domestic sources, experience marked spatial and
temporal variability in pollutant distributions. Consequently, accurate and timely air quality information is pivotal for
public health protection, regulatory compliance, and urban planning [2,3].

Historically, air quality monitoring has relied on reference-grade stations employing standardized measurement
techniques such as beta attenuation for particulate matter, chemiluminescence for nitrogen oxides, and ultraviolet
absorption for ozone. While these methods deliver high-precision data, their exorbitant costs-typically ranging from
$100,000 to $250,000 per station-restrict deployment density, resulting in coarse spatial resolution. As a result,
conventional monitoring networks often provide sparse coverage with delayed data access, rendering them inadequate
for capturing fine-scale pollution hotspots and real-time air quality fluctuations. Studies indicate that many metropolitan
regions have just a handful of monitoring stations covering several hundred square kilometers, obscuring localized
exposure risks and hindering timely interventions [4].

The advent of the Internet of Things (IoT) and advances in low-cost sensing technologies present transformative
opportunities to overcome these limitations. IoT-enabled air quality monitoring systems consist of distributed networks
of affordable sensor nodes capable of continuous measurement and wireless data transmission. Sensors based on
electrochemical and optical principles can detect a wide range of pollutants including PM2.5, PM10, NO, CO, and O3
at dramatically reduced unit costs-from $10 to $100-enabling dense deployment across urban landscapes. Although
these sensors face challenges related to accuracy, drift, and environmental sensitivities compared to reference monitors,
ongoing research into calibration techniques, including machine learning algorithms, has improved their reliability
significantly [5].

Incorporating edge computing in sensor nodes further enhances system responsiveness and efficiency by enabling local
data preprocessing, filtering, and early anomaly detection prior to cloud transmission. This reduces bandwidth
consumption and mitigates latency, vital for real-time decision-making and public alerting. Cloud platforms equipped
with advanced analytics, such as long short-term memory (LSTM) neural networks, provide predictive capabilities that
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forecast pollution episodes and identify pollution sources, facilitating proactive urban management. User-friendly
dashboards and mobile applications offer real-time air quality information and personalized health advisories to citizens,
empowering informed behavior and community engagement [6].

Despite promising technological strides, critical gaps remain in deploying scalable, integrated, and secure air quality
monitoring systems. Many existing implementations lack comprehensive frameworks that synergize sensing hardware,
heterogeneous wireless communication protocols (Wi-Fi, LoRaWAN, NB-IoT), cloud analytics, and data privacy
protections. Reliability over long-term field operation and system maintenance logistics pose additional challenges,
especially for widespread urban networks. Ensuring equitable spatial coverage, obtaining site permissions, and securing
sensor nodes against vandalism require coordinated multi-stakeholder cooperation. Furthermore, data management
involving large volume, velocity, and variety necessitates robust architectures for storage, processing, and quality
assurance [7].

This research proposes a holistic loT-based air quality monitoring architecture designed to address these challenges,
offering a cost-effective, scalable, and secure environmental sensing infrastructure, as in figure 1. The system integrates
low-cost multi-pollutant sensors on ESP32 microcontroller-based platforms, leveraging Wi-Fi and LoRaWAN for
flexible communication across diverse urban environments. Edge computing modules embedded within sensor nodes
provide data preprocessing and federated learning capabilities, optimizing calibration and reducing cloud dependencies.
The cloud platform employs time-series databases, stream processing engines, and machine learning pipelines to deliver
real-time and forecasted pollution metrics. Comprehensive security measures encompassing device authentication,
encrypted communication, and secure over-the-air firmware upgrades safeguard system integrity [8].

The proposed framework is evaluated through laboratory and field deployments across multiple urban sites,
demonstrating strong correlation with reference instrumentation after machine learning-based calibration for PM2.5,
PM10, NO, and CO sensors. Network performance metrics indicate high data availability (>96%), low latency (~2.3
seconds), and negligible packet loss (<1%). Cost analysis confirms substantial economic advantages, enabling 125
times the spatial coverage of traditional stations at a fraction of the cost. Data visualization and mobile apps facilitate
public interaction and health protection by providing timely air quality updates and personalized exposure tracking [9].

Overall, this research contributes to building smarter cities by transforming air quality monitoring from sparse and
expensive networks to accessible, dense, and intelligent sensor systems. The integrated approach advances urban
environmental management capabilities, supporting policymakers, researchers, and citizens in collectively combating
air pollution challenges [10]. This introduction provides comprehensive background, motivation, and context for the
research while highlighting the problem, emerging solutions, research gaps, and the proposed system’s contributions.Air
pollution has emerged as one of the most pressing environmental challenges of the 21st century, exerting profound
impacts on public health, ecosystems, and urban sustainability worldwide. The World Health Organization estimates
that millions of premature deaths annually are attributable to ambient air pollution, particularly fine particulate matter
(PM2.5), nitrogen oxides (NOx), ozone (O3), and carbon monoxide (CO). Urban areas, characterized by dense
populations and concentrated emissions from traffic, industry, and domestic sources, experience marked spatial and
temporal variability in pollutant distributions. Consequently, accurate and timely air quality information is pivotal for
public health protection, regulatory compliance, and urban planning [11].

Historically, air quality monitoring has relied on reference-grade stations employing standardized measurement
techniques such as beta attenuation for particulate matter, chemiluminescence for nitrogen oxides, and ultraviolet
absorption for ozone. While these methods deliver high-precision data, their exorbitant costs-typically ranging from
$100,000 to $250,000 per station-restrict deployment density, resulting in coarse spatial resolution. As a result,
conventional monitoring networks often provide sparse coverage with delayed data access, rendering them inadequate
for capturing fine-scale pollution hotspots and real-time air quality fluctuations. Studies indicate that many metropolitan
regions have just a handful of monitoring stations covering several hundred square kilometers, obscuring localized
exposure risks and hindering timely interventions [12,13].

The advent of the Internet of Things (IoT) and advances in low-cost sensing technologies present transformative
opportunities to overcome these limitations. IoT-enabled air quality monitoring systems consist of distributed networks
of affordable sensor nodes capable of continuous measurement and wireless data transmission. Sensors based on
electrochemical and optical principles can detect a wide range of pollutants including PM2.5, PM10, NO, CO, and O3
at dramatically reduced unit costs-from $10 to $100-enabling dense deployment across urban landscapes. Although
these sensors face challenges related to accuracy, drift, and environmental sensitivities compared to reference monitors,
ongoing research into calibration techniques, including machine learning algorithms, has improved their reliability
significantly [14].

Incorporating edge computing in sensor nodes further enhances system responsiveness and efficiency by enabling local
data preprocessing, filtering, and early anomaly detection prior to cloud transmission. This reduces bandwidth
consumption and mitigates latency, vital for real-time decision-making and public alerting. Cloud platforms equipped
with advanced analytics, such as long short-term memory (LSTM) neural networks, provide predictive capabilities that
forecast pollution episodes and identify pollution sources, facilitating proactive urban management. User-friendly
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dashboards and mobile applications offer real-time air quality information and personalized health advisories to citizens,
empowering informed behavior and community engagement [15].
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Figure 1. Block diagram of the loT-based urban air quality monitoring system illustrating core components and data flow

Despite promising technological strides, critical gaps remain in deploying scalable, integrated, and secure air quality
monitoring systems. Many existing implementations lack comprehensive frameworks that synergize sensing hardware,
heterogeneous wireless communication protocols (Wi-Fi, LoRaWAN, NB-IoT), cloud analytics, and data privacy
protections. Reliability over long-term field operation and system maintenance logistics pose additional challenges,
especially for widespread urban networks. Ensuring equitable spatial coverage, obtaining site permissions, and securing
sensor nodes against vandalism require coordinated multi-stakeholder cooperation. Furthermore, data management
involving large volume, velocity, and variety necessitates robust architectures for storage, processing, and quality
assurance [16].

This research proposes a holistic [oT-based air quality monitoring architecture designed to address these challenges,
offering a cost-effective, scalable, and secure environmental sensing infrastructure. The system integrates low-cost
multi-pollutant sensors on ESP32 microcontroller-based platforms, leveraging Wi-Fi and LoRaWAN for flexible
communication across diverse urban environments. Edge computing modules embedded within sensor nodes provide
data preprocessing and federated learning capabilities, optimizing calibration and reducing cloud dependencies. The
cloud platform employs time-series databases, stream processing engines, and machine learning pipelines to deliver
real-time and forecasted pollution metrics. Comprehensive security measures encompassing device authentication,
encrypted communication, and secure over-the-air firmware upgrades safeguard system integrity [17].

The proposed framework is evaluated through laboratory and field deployments across multiple urban sites,
demonstrating strong correlation with reference instrumentation after machine learning-based calibration for PM2.5,
PM10, NO, and CO sensors. Network performance metrics indicate high data availability (>96%), low latency (~2.3
seconds), and negligible packet loss (<1%). Cost analysis confirms substantial economic advantages, enabling 125
times the spatial coverage of traditional stations at a fraction of the cost. Data visualization and mobile apps facilitate
public interaction and health protection by providing timely air quality updates and personalized exposure tracking [18].

This research contributes to building smarter cities by transforming air quality monitoring from sparse and expensive
networks to accessible, dense, and intelligent sensor systems. The integrated approach advances urban environmental
management capabilities, supporting policymakers, researchers, and citizens in collectively combating air pollution
challenges.
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2. Literature Review

Urban air pollution has emerged as one of the most critical environmental challenges of the 21st century, significantly
impacting billions of people worldwide and contributing to millions of premature deaths annually. Conventional air
quality monitoring methods, typically reliant on expensive reference-grade stations, have constrained coverage and
often provide data with considerable delays. These high costs and sparse spatial distribution limit the ability to capture
the spatial variability of pollutants in urban environments effectively. Traditional stations employ sophisticated but
costly measurement techniques such as beta attenuation for particulate matter, chemiluminescence for nitrogen oxides,
and ultraviolet absorption for ozone. Although these methods ensure high precision, the prohibitive cost, generally
ranging from 100,000 to 250,000 USD per station, limits their deployment density, resulting in inadequate
representation of pollution variability across cities. Studies reveal that typical urban settings have, on average, only a
few monitoring stations covering hundreds of square kilometers, underscoring the need for more affordable and dense
monitoring solutions [19].

Recent advances in sensor technology have ushered in a new era of low-cost air quality monitoring using Internet of
Things (IoT) frameworks. Emerging low-cost sensors based on electrochemical principles can measure gases such as
nitrogen oxides (NO), carbon monoxide (CO), and ozone (O3) at significantly reduced costs, typically between 20 and
100 USD. Optical particle counters capable of detecting particulate matter (PM2.5 and PM10) also fall in the cost range
of 10 to 50 USD. Despite their affordability and potential for dense deployment, these sensors suffer from lower
precision, higher signal drift, and increased vulnerability to environmental factors compared to traditional reference
instruments. Thus, improving the accuracy and reliability of these low-cost devices is a key research focus. Calibration
methods have evolved, including mechanical approaches and, more recently, machine learning (ML)-based techniques
that dynamically adjust sensor outputs to correct for drift and environmental interference. Calibration models such as
random forests and neural networks have been utilized to enhance sensor performance, enabling more dependable data
collection within large IoT networks [20].

The integration of edge computing within IoT frameworks has been identified as a crucial advancement for real-time air
quality monitoring. Edge computing allows data preprocessing at or near the sensor nodes, thereby reducing latency and
bandwidth requirements for transmitting raw data to centralized cloud platforms. However, many earlier studies and
implementations have focused on data transmission and cloud analytics without meaningful incorporation of edge-level
intelligence. Furthermore, scalability remains a persistent challenge, as city-wide implementations demand efficient
handling of hundreds to thousands of nodes, each producing high-frequency data. Key research gaps include the lack of
comprehensive frameworks combining sensing layers, communication protocols, cloud-based analytics, and user
engagement platforms into a resilient and scalable system. Moreover, issues such as the reliability of sensor nodes over
long-term deployments, robust field validation, and system security, including data privacy concerns, remain under-
addressed in many proposed solutions [21].

Hardware architectures for sensor nodes in IoT air quality monitoring systems are typically composed of
microcontrollers such as ESP32 or Arduino boards equipped with Wi-Fi and Bluetooth for wireless communication. Air
quality sensors commonly used comprise optical particle counters (e.g., PMS5003, SDS011) for particulate matter and
electrochemical sensors (e.g., MQ-135, MiCS-6814) for gaseous pollutants such as CO and NO. Complementary
sensors such as DHT22 provide temperature and humidity readings, essential for calibrating raw sensor data to correct
environmental dependencies. Optional modules like GPS support location tagging, particularly useful for mobile sensor
units. Power considerations often involve solar panels with battery backups to ensure uninterrupted operation, housed
within weather-resistant enclosures designed to allow air exchange while protecting internal electronics. On the
software front, sensor nodes run acquisition firmware configured for periodic data collection, local buffering,
timestamping, error detection, and over-the-air firmware update capabilities, ensuring maintainability and adaptability
across widespread deployments [22,23].

Wireless communication protocols play a pivotal role in IoT-enabled air quality monitoring. Selection depends on
deployment scale, power consumption, and data rate requirements. Wi-Fi, with a range of about 100 meters but high
power consumption, is suitable for dense urban areas requiring high data throughput. In contrast, Low Power Wide
Area Network (LPWAN) technologies like LoRaWAN offer long-range communication (up to 15 km) with low power
and low data rates, ideal for city-wide sensor networks. Narrowband IoT (NB-IoT) provides carrier-based connectivity
with better range and medium data rates, while Zigbee and Bluetooth Low Energy (BLE) cater to indoor or wearable
device applications. Each protocol presents a trade-off between coverage, power usage, and data throughput,
influencing network design and deployment strategies [24].

Cloud platforms serve as the backbone for storing, managing, and analyzing collected air quality data. Modern solutions
deploy time-series databases such as InfluxDB and TimescaleDB to optimize data storage and querying performance.
Data warehousing supports historical analysis, while stream processing frameworks, including Apache Kafka and
Apache Flink, facilitate real-time data processing. Machine learning pipelines are embedded within the cloud
infrastructure to provide air quality forecasting, spatial interpolation, and trend analysis. User-facing services include
real-time dashboards with pollution maps, historical data visualization, predictive forecasts, and pollution source
identification. Mobile applications extend accessibility by offering location-based air quality alerts, personal exposure
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monitoring, and health recommendations, while public APIs enable integration with external applications and research
[25].

Calibration remains a critical step in ensuring data quality from low-cost sensors. Different methods include laboratory
calibration under controlled exposure to known pollutant concentrations and co-location with reference instruments for
field calibration over several weeks to develop correction models. Continuous calibration approaches involve periodic
recalibration cycles, cross-calibration between sensor nodes, and applying drift detection and compensation algorithms
to maintain long-term data fidelity. Machine learning-based calibration has shown promising results by modeling
complex nonlinear relationships and environmental dependencies better than traditional methods [26].

Deployment strategies for sensor networks vary, with site selection based on pollution source proximity, representative
environmental conditions, optimal height (typically 2 to 4 meters above ground), and infrastructure availability.
Network topology often adopts grid-based layouts for uniform coverage or source-oriented deployment to focus on
pollution hotspots. Population-weighted strategies prioritize high-density areas, and hybrid approaches combine various
deployment principles to optimize coverage and relevance. Sensor density varies with spatial resolution needs, ranging
from 500 meters to 1 km spacing in urban areas, tighter density in hotspots, and sparser distribution in suburban regions
[27].

The data processing pipeline in IoT air monitoring systems encompasses stages such as data acquisition at frequent
intervals, validation through range and consistency checks, calibration to adjust sensor outputs, temporal and spatial
aggregation, and advanced analytics including pollutant forecasting. State-of-the-art machine learning models like Long
Short-Term Memory (LSTM) neural networks are applied to predict pollutant concentrations over multiple time
horizons based on historical measurements and meteorological data. Performance evaluation of these ML models
typically employs root mean square error (RMSE), mean absolute error (MAE), and correlation coefficients (R) to
quantify predictive accuracy [28].

Security considerations are paramount due to the distributed and often publicly exposed nature of sensor networks.
Device security measures include secure boot processes, firmware encryption, device-specific authentication certificates,
and secure over-the-air update mechanisms to prevent tampering. Network security involves end-to-end encryption
protocols such as TLS 1.3, Virtual Private Network (VPN) tunnels for secure gateway-to-cloud communication, and
protections against distributed denial-of-service (DDoS) attacks. Data privacy and confidentiality are addressed through
encrypted storage and controlled access policies [29].

Evaluation of low-cost loT-based air quality monitoring systems has demonstrated encouraging results, with sensor data
accuracy significantly improved via ML-based calibration as in table 1. Correlation coefficients for particulate matter
(PM2.5 and PM10) measurements range around 0.85 to 0.89 with low root mean square errors, indicating strong
agreement with reference instruments. Gas sensors measuring nitrogen oxides and carbon monoxide exhibit correlations
above 0.8, supporting their utility for real-time monitoring despite inherent sensor limitations. Network statistics reveal
low latency and packet loss, with reliable gateway uptime and efficient bandwidth utilization, fulfilling the operational
requirements for city-scale deployments [30].

Cost analysis illustrates the economic advantage of loT-based monitoring, with each sensor node costing approximately
400 USD compared to 150,000 USD for traditional reference stations. This price differential allows for a 125-fold
increase in coverage and spatial resolution within the same budget, encouraging widespread adoption in smart city
initiatives. The system facilitates enhanced public health protection by informing citizens about current air quality,
enabling proactive behavior such as scheduling outdoor activities during low pollution periods, and providing health
guidance tailored to vulnerable populations [31].

Despite the promising advancements, challenges persist in low-cost IoT air quality monitoring systems. Sensor
limitations include signal drift, environmental cross-sensitivity, and limited operational lifespan requiring regular
recalibration and maintenance. Data quality issues arise from missing data, spatial interpolation errors, and the difficulty
of generalizing models across diverse urban environments. Power management constraints affect the performance of
solar-powered nodes during extended periods of cloud cover. Communication challenges involve network congestion,
interference in dense urban areas, and bandwidth limitations. Deployment obstacles include obtaining permissions,
device security, vandalism, and maintaining equitable coverage across socioeconomically diverse neighborhoods [32].

Future research directions highlight the integration of advanced sensing technologies that leverage breakthroughs in
nanotechnology for higher precision and reduced sensor drift. The fusion of satellite remote sensing data with ground-
based measurements is proposed to enhance spatial accuracy and fill coverage gaps. Advanced analytics, such as
explainable Al for pollution source identification and transfer learning for rapid model adaptation, are gaining focus to
improve predictive capabilities. Edge intelligence aims to execute Al models locally on sensor nodes, enabling
federation learning and autonomous network optimization. Integrating mobile and wearable sensing devices promises
personalized exposure tracking and broader data collection. Blockchain-based decentralized data management may
offer improved data integrity and citizen engagement through tokenization and smart contracts. These developments are
anticipated to shape the next generation of IoT-enabled urban air quality monitoring systems, fostering smarter cities
and healthier communities [33,34].
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Table 1. Comparison between Traditional and IoT-based Air Quality Monitoring

Feature Traditional Stations IoT-Based Monitoring
Cost Very High ($100k-250k) Low ($400-1000/node)
Coverage Sparse (few stations per city) Dense (hundreds of nodes)
Data Availability Delayed Real-time

Maintenance High Moderate

Flexibility Low High

3. Proposed System Architecture

The proposed system architecture is designed to address the limitations of traditional air quality monitoring by
leveraging a robust loT-enabled framework capable of real-time, spatially dense, and cost-effective measurements, as in
figure 2. At its core, the architecture is comprised of distributed sensor nodes, secure wireless communication protocols,
centralized cloud-based analytics, data management platforms, and user access modules that together form an integrated
ecosystem. The goal is to provide reliable data streams, advanced predictive analytics, and actionable insights for urban
pollution management, ultimately supporting public health interventions and smart city initiatives.
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Figure 2. Architecture diagram of the proposed IoT-based urban air quality monitoring system showing data flow from low-cost
sensor nodes through edge computing and cloud analytics to user interfaces with security and machine learning components

Each sensor node in the architecture is engineered for affordability, scalability, and operational resilience. Hardware
components include a microcontroller, typically ESP32 or Arduino-based, equipped with Wi-Fi and Bluetooth modules
for flexible connectivity. The sensor array consists of optical particle counters (such as PMS5003 or SDS011) for PM2.5
and PM10, electrochemical gas sensors (MQ-135, MiCS-6814) for pollutants like CO, NO, and O3, and a DHT22
temperature-humidity sensor to facilitate calibration against environmental effects. For mobile deployments, optional
GPS modules provide geotagging, enhancing data granularity and mapping capabilities. Power is supplied via mains or
solar panels with battery backup, while robust weather-resistant enclosures ensure sustained operation in harsh outdoor
conditions. Sensor nodes execute firmware responsible for periodic data acquisition, local buffering, timestamping,
error detection, and self-diagnostics, with remote over-the-air updates enabling adaptive, long-term maintenance.
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Wireless communication serves as the backbone for data transmission from distributed sensors to the cloud. The
architecture supports multiple protocols to accommodate diverse deployment scenarios: Wi-Fi enables high data
throughput in dense urban clusters, LoRaWAN offers low power long-range coverage up to 15 km suitable for city-wide
deployments, NB-IoT supports carrier-scale communication, and Zigbee/BLE are used for mesh networks or
wearable/mobile applications. Protocol selection is determined by the operating environment, power availability, data
requirements, and network reliability objectives. Data packets are transmitted securely using end-to-end encryption
(TLS/SSL), device authentication, and credential management, effectively mitigating risks related to data interception
and unauthorized access.

At the cloud platform layer, the system architecture incorporates a scalable data management suite, real-time analytics
pipeline, and disaster recovery features. Sensor data streams are ingested into time-series databases such as InfluxDB or
TimescaleDB, optimized for high-frequency querying and large-scale archival. Backup and replication mechanisms
guard against data loss and ensure high availability. The analytics engine orchestrates real-time stream processing using
frameworks like Apache Kafka and Apache Flink to clean, validate, and aggregate the incoming data. Machine learning
pipelines support air quality forecasting, anomaly detection, and spatial interpolation, employing models such as LSTM
neural networks tailored for temporal prediction.

A key innovation of the proposed architecture is the integration of edge intelligence at the sensor node layer. By
incorporating local data preprocessing and preliminary analytics, the edge reduces latency and alleviates network
bandwidth constraints. Preprocessed data, free of outliers and missing values, enables more efficient backend analytics
and enhances the reliability of the monitoring system. The distributed processing paradigm supports federated learning
approaches, enabling sensor nodes to improve calibration and detection performance through localized model updates.

User engagement is facilitated through versatile application services. A web dashboard presents real-time color-coded
pollution level maps, historical trends, station-specific data, predictive analytics, and pollution source analysis. Mobile
applications offer location-based real-time air quality information, push notifications for pollution events, individual
exposure monitoring, and health advisory services, tailored to sensitive groups such as children, the elderly, and patients
with respiratory conditions. Citizen science features enable users to contribute observations and augment data coverage,
fostering public participation in environmental monitoring.

Calibration protocols are embedded within the operational workflow to guarantee data accuracy. Laboratory calibration
involves co-location with reference instruments in controlled settings, generation of correction factors for
environmental dependencies, and comprehensive exposure testing. Field calibration places sensor nodes alongside
standard stations for several weeks to gather paired datasets and develop machine learning-based correction models that
account for drift, cross-sensitivity, and local conditions. Continuous calibration is executed through periodic cycles,
cross-node comparison, and drift compensation algorithms, ensuring persistent data quality despite hardware limitations.

Security is integral to the system, with device-level protections such as secure boot and firmware encryption, device
identifiers, and certificate-based authentication. Regular over-the-air patches safeguard against vulnerabilities. Network
communications are secured using TLS 1.3, VPN tunnels for gateways, and proactive measures against threats like
DDoS attacks. Data storage incorporates encryption and controlled access policies, upholding confidentiality and
integrity throughout the data lifecycle.

This end-to-end architecture realizes a cost-effective, highly scalable, and secure air quality monitoring network
suitable for city-scale deployment. By harmonizing low-cost hardware, heterogeneous communication protocols, edge-
cloud analytics, rigorous calibration, and responsive user interfaces within a unified system, it sets a benchmark for
modern environmental monitoring solutions. The system’s modular design supports future expansions, including multi-
modal sensing and integration with mobile, personal devices, and health systems, ensuring continued relevance and
societal impact.

4. Results and Discussion

The implementation and comprehensive assessment of the proposed IoT-based air quality monitoring system have
generated significant results, establishing its effectiveness, scalability, and practical value for urban pollution
management, as in figure 3. The integration of low-cost sensor nodes, multi-protocol wireless communication, real-time
analytics, and user-centric applications resulted in a highly functional deployment that overcame many traditional
monitoring limitations, as evidenced in both laboratory and field evaluations.

Performance verification was conducted by comparing the IoT sensor data against reference-grade station
measurements in several urban locations, as in table 2. After rigorous machine learning-based calibration, the system
achieved high correlation coefficients for particulate matter measurements: PM2.5 results showed an R value of 0.89
and a root mean square error (RMSE) of 8.2 pg/m*, while PM10 yielded an R of 0.85 with RMSE at 12.5 pug/m?. For
gaseous pollutants, nitric oxides (NO) registered an R of 0.82 and RMSE of 6.3 ppb, and carbon monoxide (CO)
achieved an R of 0.87 with RMSE of 0.3 ppm. These values demonstrate strong agreement with regulatory
measurements, validating the system’s accuracy after calibration.

Reliability testing highlighted the robust operation of the sensor nodes and the network infrastructure. Data availability
reached 96.3%, accounting for planned maintenance, occasional power failures, and sporadic network loss. Sensor
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lifespan evaluations indicated that particle sensors maintained optimal performance for 18 to 24 months, while gas
sensors typically operated for 24 to 36 months before requiring replacement. Maintenance was found to be manageable,
necessitating quarterly sensor cleaning and annual calibration adjustments. These metrics underscore the system’s
sustainability and operational practicality for long-term deployment in urban conditions.

Table 2. Analysis of key performance, reliability, and cost metrics for the proposed loT-based air quality monitoring system,
highlighting sensor accuracy, network efficiency, operational lifespan, scalability, cost-effectiveness, and noted technical challenges

Metric/Parameter Value/Result Significance/Observation

PM2.5 Correlation (R) | 0.89 rljllegal;urem::l?;c;fter Mglgzlllibratirgfulatory
PM2.5 RMSE 8.2 pg/m? Low error margin post-calibration

PM10 Correlation (R) 0.85 Reliable particulate matter mapping
PM10 RMSE 12.5 pg/m? Acceptable for urban deployments

NO Correlation (R) 0.82 Effective gas pollutant tracking

NO RMSE 6.3 ppb Sufficient for rapid urban assessments

CO Correlation (R) 0.87 Highly accurate CO measurements

CO RMSE 0.3 ppm Robust gas sensing accuracy

Data Availability 96.30% Reliable long-term urban operation

Sensor Lifespan

18-24 months (particle), 24-36 months (gas)

Low maintenance and operational costs

Network Latency 2.3 seconds Supports real-time monitoring

Packet Loss Rate 0.80% Very low transmission error

Gateway Uptime >99.2% Reliable data flow to cloud

Bandwidth Utilization 15 KB/hour/node Optimized for large deployments

CIOUd. Database 10,000 nodes Scalable for city-wide sensor networks
Capacity

Dashboard Load Time | 3 seconds Fast and user-friendly visualization

API Throughput 1,000 requests/sec Effective for third-party integration

Cost Per Node $400 Enables budget-friendly dense coverage
Reference Station Cost | $150,000 Proposed system achieves 125x coverage

Maintenance Needs Quarterly cleaning/yearly calibration Simple regular upkeep

Health/Community Real-time public info, tailored advice Significant improvement in citizen

Impact engagement

Technical Limitations Sensor drift, data gaps, power/network issues Negds. , ongome calibration and
optimization

Network communication analysis showed notable efficiency and low operational latency. The average sensor-to-
gateway latency was measured at 2.3 seconds, with a packet loss rate of only 0.8%. Gateway uptime consistently
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exceeded 99.2%, supporting reliable data transmission even during peak load periods. Bandwidth utilization was
optimized, with each sensor node consuming approximately 15 KB per hour for data transfer. LoORaWAN provided
stable coverage within widely distributed deployment zones, while Wi-Fi facilitated frequent updates for nodes situated
in high-density urban clusters. The system easily accommodated expansion to city-wide scale, supporting thousands of
devices concurrently.

Scalability testing further affirmed the architecture’s capacity for growth. The cloud data platform handled up to 10,000
simultaneous sensor connections without performance degradation. Real-time database queries responded within 100
milliseconds, and historical queries processed within 2 seconds, enabling rapid analytics. The interactive dashboard
rendered full city pollution maps in about 3 seconds, and API throughput reached up to 1,000 requests per second under
load, proving suitable for integration with external applications and wider research use.

Sensor Correlation Coefficients

PM2.5 PM10 NO CcO
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0.88
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Figure 3. Analysis graphs illustrating key system performance metrics for the IoT-based air quality monitoring framework

A cost analysis demonstrated profound economic advantages over conventional air quality monitoring approaches. The
total cost per IoT sensor node-considering sensors, microcontroller, communication hardware, power supply, protective
enclosure, and installation-was approximately 400 USD. In contrast, regulatory reference stations cost an average of
150,000 USD per unit, granting the proposed system a 125-fold increase in spatial coverage for the same budget. The
dense array of low-cost sensors provided much finer spatial pollution mapping and more frequent data, contributing
substantially to the utility of smart city air management strategies.

The impact on public health and community engagement was substantial. Citizens benefited from immediate access to
current air quality information through mobile applications, facilitating decisions about outdoor activities, workout
scheduling, and individual health risk management. The system offered tailored health advice, particularly supporting
vulnerable groups such as children, older adults, and respiratory patients. Calendar synchronization with low pollution
periods improved exercise routines and daily living choices, while longitudinal tracking allowed individuals to monitor
their exposure over extended periods.

Despite promising results, the discussion acknowledges several technical and operational limitations. Low-cost sensors,
while providing dense coverage, exhibited greater error margins and signal drift requiring regular maintenance and
recalibration. Data quality occasionally suffered due to missing values caused by connectivity loss or sensor failures,
necessitating robust automated quality control in analytics. Environmental dependencies such as temperature and
humidity required dynamic compensation, underscoring the need for continual model refinement. Power management
posed challenges, especially for solar-powered nodes facing protracted cloudy weather, calling for further optimization
in battery and power subsystem design. Communication difficulties included temporary gaps in coverage within
metropolitan zones and network congestion impacts during high-frequency data bursts.

Further, the deployment process faced obstacles concerning site permissions, device security, vandalism risks, and
equitable coverage in different neighborhoods. The digital divide and institutional adoption posed additional challenges,
highlighting the necessity of coordinated outreach and trust-building between stakeholders and end-users. Technical
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sustainability also depended on ongoing funding and organizational support, with provisions for hardware upgrades and
obsolescence planning required for continued relevance.

The results and discussion emphasize that the proposed IoT-based air quality monitoring system constitutes a serious
advance in smart urban environmental management. It combines scientific rigor, technical scalability, operational
practicality, and profound cost benefits, yet warrants continued improvement in sensor reliability, network robustness,
and user engagement strategies. These insights chart a promising path for further research, technology enhancement,
and city-wide adoption of low-cost intelligent air quality monitoring systems.

5. Conclusion and Future Works

This research successfully demonstrated the development and deployment of a low-cost, scalable IoT-based air quality
monitoring system addressing the limitations of traditional monitoring networks. The system integrates affordable
sensor nodes, multi-protocol wireless communication, edge and cloud analytics, and user-centered applications to offer
real-time, spatially dense pollution data. Performance evaluations confirmed strong correlations of sensor readings with
reference instruments after machine learning-based calibration, achieving high accuracy for particulate matter and
gaseous pollutants. The network demonstrated reliable data transmission, low latency, and robust uptime, enabling
continuous urban air quality assessment on a city-wide scale. Cost analysis highlighted a remarkable 125-fold cost
advantage over conventional stations, promising broad applicability for smart city initiatives. The framework also
engaged citizens with personalized exposure tracking and health advisories, contributing meaningfully to public health
awareness.

Future research will focus on enhancing sensor reliability through next-generation sensing technologies with improved
precision and drift resistance. Advanced calibration techniques, including transfer learning and federated edge
intelligence, will be explored to maintain accuracy under diverse environmental conditions. Further integration of multi-
modal environmental sensing covering air, water, and noise pollution is planned to provide holistic urban environmental
monitoring. Efforts to optimize power usage and communication protocols will support longer autonomous operation
and wider coverage. Blockchain and decentralized architectures will be investigated to enhance data security, integrity,
and citizen engagement. Additionally, coupling air quality data with health information systems will enable
epidemiological insights driving policy and preventive healthcare. Addressing social challenges such as institutional
adoption, digital divide, and public trust will be essential for sustained impact. Overall, continuous innovation and
interdisciplinary collaboration will be crucial to realize the vision of intelligent, accessible, and actionable urban air
quality monitoring.
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